1. Построение деревьев LambdaMART: LambdaMART использует деревья решений, которые предсказывают релевантность объектов (например, веб-страниц или товаров). Для каждого объекта есть целевая переменная - его реальный ранг или релевантность.
2. Вычисление функции потерь LambdaMART: Функция потерь оценивает, насколько хорошо предсказанные ранги соответствуют реальным рангам. Она учитывает веса (lambdas), которые определяют важность каждого объекта.
3. Градиентный бустинг для деревьев LambdaMART: LambdaMART использует градиентный бустинг для обучения последовательности деревьев. Каждое дерево строится для улучшения текущего ранжирования.
4. Ансамбль деревьев LambdaMART: После обучения деревьев они объединяются в ансамбль. Каждое дерево представляет собой слабый ранжировщик, но ансамбль улучшает ранжирование.
5. Предсказание рангов: Для новых объектов LambdaMART предсказывает их ранги, используя ансамбль деревьев. Это помогает определить порядок объектов в результатах поиска или рекомендациях, учитывая их релевантность.
1. Построение деревьев LambdaMART: LambdaMART использует деревья решений, которые предсказывают релевантность объектов (например, веб-страниц или товаров). Для каждого объекта есть целевая переменная - его реальный ранг или релевантность.
2. Вычисление функции потерь LambdaMART: Функция потерь оценивает, насколько хорошо предсказанные ранги соответствуют реальным рангам. Она учитывает веса (lambdas), которые определяют важность каждого объекта.
3. Градиентный бустинг для деревьев LambdaMART: LambdaMART использует градиентный бустинг для обучения последовательности деревьев. Каждое дерево строится для улучшения текущего ранжирования.
4. Ансамбль деревьев LambdaMART: После обучения деревьев они объединяются в ансамбль. Каждое дерево представляет собой слабый ранжировщик, но ансамбль улучшает ранжирование.
5. Предсказание рангов: Для новых объектов LambdaMART предсказывает их ранги, используя ансамбль деревьев. Это помогает определить порядок объектов в результатах поиска или рекомендациях, учитывая их релевантность.
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.
The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.
Библиотека собеса по Data Science | вопросы с собеседований from ca